

Lecture 18:
Nonregular Languages

CS103CS103

Winter 2025Winter 2025

Recap from Last Time

Theorem: The following are all equivalent:

 · L is a regular language.
 · There is a DFA D such that (ℒ D) = L.
 · There is an NFA N such that (ℒ N) = L.
 · There is a regular expression R such that (ℒ R) = L.

a b

Ready!

c ■

Finite-Memory
Computing Device

The Model
● The computing device has internal workings that can be

in one of finitely many possible configurations.
● Each state in a DFA corresponds to some possible

configuration of the internal workings.
● After each button press, the computing device does

some amount of processing, then gets to a configuration
where it's ready to receive more input.
● Each transition abstracts away how the computation is done

and just indicates what the ultimate configuration looks like.
● After the user presses the “done” button, the computer

outputs either YES or NO.
● The accepting and rejecting states of the machine model

what happens when that button is pressed.

New Stuff!

First, a Preliminary (and Crucial) Exercise

qₖ

Suppose we have a DFA for (ℒ a* b*∪).

Suppose we
land here upon
reading aaaa.

Not knowing what the rest of the DFA
looks like, which of the following can

we say are true?

(a) aaa must also land us in this state

(b) aaa might also land us in this state

(c) aaa could not land us in this state

(d) bbb must also land us in this state

(e) bbb might also land us in this state

(f) bbb could not land us in this state

Note: We have not indicated
whether qk accepts or rejects. Answer at

https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev

Nonregular Languages

A Powerful Intuition
● Regular languages correspond to problems

that can be solved with finite memory.
● At each point in time, we only need to store

one of finitely many pieces of information.
● Nonregular languages, in a sense, correspond

to problems that cannot be solved with finite
memory.

● Since every computer ever built has finite
memory, in a sense, nonregular languages
correspond to problems that cannot be solved
by physical computers!

Finding Nonregular Languages

Finding Nonregular Languages
● To prove that a language is regular, we can just find a

DFA, NFA, or regex for it.
● To prove that a language is not regular, we need to

prove that there are no possible DFAs, NFAs, or
regexes for it.
● Claim: We can actually just prove that there's no DFA for it.

Why is this?
● This sort of argument will be challenging. Our

arguments will be somewhat technical in nature, since
we need to rigorously establish that no amount of
creativity could produce a DFA for a given language.

● Let's see an example of how to do this.

A Simple Language
● Let Σ = {a, b} and consider the following

language:
E = {anbn | n ∈ ℕ }

● E is the language of all strings of n a's
followed by n b's:

{ ε, ab, aabb, aaabbb, aaaabbbb, … }

A Simple Language

E = {anbn | n ∈ ℕ }

None of these regular expressions are
regexes for the language E. Explain why not.

a*b*
(ab)*

ε ab a∪ ∪ 2b2 a∪ 3b3

Answer at https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev

We seem to be running into some trouble.
Why is that?

Let's imagine what a DFA for the language
{ anbn | n ∈ ℕ} would have to look like.

Can we say anything about it?

sta
rt

aaaa

aa

bbbb

bb

bbbb

bb

aaaabbbb

aaaabb

aabbbb

aabb

These cannot be
the same state!

This isn't a single
transition. Think of it as
“after reading aaaa, we
end up at this state.”

q₀ qₖ qₙ

start

A Different Perspective

aa

aaaa aaaabbbb

aabbbb

What happens if qₙ is…

…an accepting state? We accept aabbbb ∉ E!
…a rejecting state? We reject aaaabbbb ∈ E!

What’s Going On?
● Lemma: If D is a DFA for E = {anbn | n ∈ ℕ} and we run

D on both a2 and a4, then those strings do not end in the
same state.

● Two Proof Ideas:
● Direct: The states you reach for a4 and a2 have to behave

differently when reading b4 – in one case it should lead to an
accepting state, in the other it should lead to a rejecting state.
Therefore, they must be different states.

● Contradiction: Suppose you do end up in the same state. Then
a4b4 and a2b4 end up in the same state, so we either reject a4b4
(oops) or accept a2b4 (oops).

● Powerful intuition: Any DFA for E must keep a2 and a4
separated. It needs to remember something
fundamentally different after reading those strings.

sta
rt

aaaa

aa

bbbb

bb

bbbb

bb

bbbb

bb

bbb

bbb

bbb

aaa

A More General Result
● Lemma: Let D be a DFA for E = {anbn | n ∈ ℕ}. For any

distinct strings am and an, if we run D on both am and an,
then those strings do not end in the same state.

● Two Proof Ideas:
● Direct: The states you reach for am and an have to behave

differently when reading bm – in one case it should lead to an
accepting state, in the other it should lead to a rejecting state.
Therefore, they must be different states.

● Contradiction: Suppose you do end up in the same state. Then
ambm and ambn end up in the same state, so we either reject ambm
(oops) or accept ambn (oops).

● Powerful intuition: Any DFA for E must keep am and an
separated. It needs to remember something
fundamentally different after reading those strings.

A Bad Combination
● Suppose there is a DFA D for the language

E = {anbn | n ∈ ℕ }.
● We know the following:

● Any two strings of the form am and an, where m ≠ n,
cannot end in the same state when run through D.

● There are infinitely many strings of the form am.
● However, there are only finitely many states they

can end up in, since D is a deterministic finite
automaton!

● What happens if we put these pieces together?

Theorem: The language E = { anbn | n ∈ ℕ } is not regular.
Proof: Suppose for the sake of contradiction that E is regular.

Let D be a DFA for E, and let k be the number of states in
D. Consider the strings a0, a1, a2, …, ak. This is a collection
of k+1 strings and there are only k states in D. Therefore,
by the pigeonhole principle, there must be two distinct
strings am and an that end in the same state when run
through D. But this is impossible, since we know that am

and an cannot end in the same state when run through D.
We have reached a contradiction, so our assumption must
have been wrong. Therefore, E is not regular. ■

We're going to see a simpler proof of this result later on once we've built more
machinery. If (hypothetically speaking) you want to prove something like this in

the future, we'd recommend not using this proof as a template.

What Just Happened?
● We've just hit the limit of finite-

memory computation.
● To build a DFA for E = { anbn | n ∈ ℕ },

we need to have different memory
configurations (states) for all possible
strings of the form an.

● There's no way to do this with finitely
many possible states!

Time-Out for Announcements!

Second Midterm Logistics
● Our second midterm exam is next Tuesday, February

25th from 7-9 PM. Locations vary (mostly CEMEX).
● Check seating assignment page! Big shake-up!
● Topic coverage is primarily lectures 06 – 13 (functions

through induction) and PS3 – PS5. Finite automata and
onward won’t be tested here.
● Because the material is cumulative, topics from PS1 – PS2 and

Lectures 00 – 05 are also fair game.
● The exam is closed-book and closed-computer. You can

bring one double-sided 8.5” × 11” sheet of notes with you.
● Students with accommodations and alternate

arrangements: check seating assignment page. Contact us
if anything is amiss.

Review Session
● Anisha and Zach will be holding a review session

Sunday, February 23rd from 4–6 PM in CoDa
E160.

● As with last time, this is not recorded.
● As with last time, come prepared with questions

you want to ask.
● We also have a ton of practice exams up on the

course website.
● Best of luck – you can do this!

Back to CS103!

Generalizing the Proof

What We Did
● Our proof that E = {anbn | n ∈ ℕ} is not regular

relied on several observations:
● No two strings of the form am and an can end in the

same state in any DFA for E, because there’s a string
we can append that puts one in the language and keeps
the other out.

● There are infinitely many strings of this form, so we can
run as many of them as we’d like through a DFA for E.

● DFAs only have finitely many states, so by the
pigeonhole principle any DFA for E necessarily has to
put two of these strings in the same place.

● So there can’t be a DFA for E.
● Question: Can we generalize this idea?

Distinguishability
● Let L be an arbitrary language over Σ.
● Two strings x ∈ Σ* and y ∈ Σ* are called

distinguishable relative to L if there is a string
w ∈ Σ* such that exactly one of xw and yw is in L.

● We denote this by writing x ≢L y.
● Formally, we say that x ≢L y if the following is true:

∃w ∈ Σ*. (xw ∈ L ↔ yw ∉ L)

This is how we
express exclusive “OR”
in propositional logic.

Distinguishability
● Consider the language

E = { anbn | n ∈ ℕ }.
● There’s a collection of

strings to the right.
● Which pairs of these strings

are distinguishable relative
to E? What would you
append to distinguish
them?

● Two strings x and y are
distinguishable relative to E
if there’s a string w where
exactly one of xw and yw
belongs to E.

aab

abb

aaa

aba

bbb

b b

bbb

b

Distinguishability
● A palindrome is a string that is the same when the

characters are read left-to-right and right-to-left.
● Consider the language

L = { w ∈ {a, b}* | w is a palindrome }
● Which pairs of the strings below are distinguishable relative

to L? What would you append to distinguish them?

aab

abb

aaa

aba

ε

a ε

a

ε
 ε

Answer at
https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev

Distinguishing Sets
● Let L ⊆ Σ* be a language. A distinguishing set for L

is set S ⊆ Σ* where the following is true:
∀x ∈ S. ∀y ∈ S. (x ≠ y → x ≢L y).

● In other words, it’s a set of strings S where all pairs of
distinct strings in S are distinguishable relative to L.

aab

abb

aaa

aba

bbb

b b

bbb

b

aab

abb

aaa

aba

ε

a ε

a

ε
 ε

× ✓

Distinguishing Sets
● Let E = { anbn | n ∈ ℕ }.
● Which of the following are distinguishing

sets for E?

{ ε, a, ab }
a*

{ anbn | n ∈ ℕ }

Answer at
https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev

Distinguishing Sets
● Let L = { w ∈ {a, b}* | w is a

palindrome }.
● Which of the following are distinguishing

sets for L?
{ ε, a, ab }

a*
{ anbn | n ∈ ℕ }

Answer at
https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev

Distinguishability
● Theorem: Let L be an arbitrary language over Σ. Let

x ∈ Σ* and y ∈ Σ* be strings where x ≢L y. Then if D is any
DFA for L, then D must end in different states when run on
inputs x and y.

● Proof sketch:

q₀ qₖ qₙ

start

y

x xw

yw

Theorem (Myhill-Nerode): Let L be a
language. If L has an infinite

distinguishing set (a distinguishing set
containing infinitely many strings), then L

is not regular.

Theorem: Let L be a language. If L has an infinite distinguishing
set, then L is not regular.

Proof: Assume for the sake of contradiction that there is an infinite
distinguishing set S for L but that L is regular.
We know L is regular, so there is a DFA D for L. Let k be the
number of states in D. Since there are infinitely many strings in
S, we can pick k+1 distinct strings w₁, w₂, …, and wk+1 from S.
Consider what happens when we run D on all those strings.
There are only k states in D and we have k+1 strings, so by the
pigeonhole principle there are strings wᵢ ≠ wⱼ in S that end in
the same state when run through D.
Because wᵢ ≠ wⱼ and S is a distinguishing set for L, we know
that wᵢ ≢ wⱼ. As we saw earlier, when we run wᵢ and wⱼ through
D, they therefore end up in different states. But this is
impossible: wᵢ and wⱼ end in the same state when run through D.
We have reached a contradiction, so our assumption must have
been wrong. Thus L is not a regular language. ■

L

Using the Myhill-Nerode Theorem

Theorem: The language E = { anbn | n ∈ ℕ } is
not regular.

Proof: Let S = { an | n ∈ ℕ }. We will prove that S is
infinite and that S is a distinguishing set for E.
To see that S is infinite, note that S contains one
string for each natural number.
To see that S is a distinguishing set for E, consider
any two strings am, an ∈ S where m ≠ n. Note that
ambm ∈ E and that anbm ∉ E. Therefore, we see that
am ≢ an, as required.
Since S is infinite and is a distinguishing set for E,
by the Myhill-Nerode theorem we see that E is not
regular. ■

E

Theorem: The language L = { w ∈ {a, b}* | w is a
palindrome } is not regular.

Proof: Let S = { anbn | n ∈ ℕ }. We will prove that S
is infinite and that S is a distinguishing set for L.
To see that S is infinite, note that S contains one
string for each natural number.
To see that S is a distinguishing set for L, consider
any two strings ambm, anbn ∈ S where m ≠ n. Note
that ambmbmam ∈ L and that anbnbmam ∉ L. Therefore,
we see that ambm ≢ anbn, as required.
Since S is infinite and is a distinguishing set for L,
by the Myhill-Nerode theorem we see that L is not
regular. ■

L

Theorem: The language L = { w ∈ {a, b}* | w is a
palindrome } is not regular.

Proof: Let S = { an | n ∈ ℕ }. We will prove that S
is infinite and that S is a distinguishing set for L.
To see that S is infinite, note that S contains one
string for each natural number.
To see that S is a distinguishing set for L, consider
any two strings am, an ∈ S where m ≠ n. Note
that ambam ∈ L and that anbam ∉ L. Therefore, we
see that am ≢ an, as required.
Since S is infinite and is a distinguishing set for L,
by the Myhill-Nerode theorem we see that L is not
regular. ■

L

Approaching Myhill-Nerode
● The challenge in using the Myhill-Nerode

theorem is finding the right set of strings.
● General intuition:

● Start by thinking about what information a
computer “must” remember in order to answer
correctly.

● Choose a group of strings that all require
different information.

● Prove that you have infinitely many strings an
that the group of strings is a distinguishing set.

Tying Everything Together
● One of the intuitions we hope you develop for

DFAs is to have each state in a DFA represent
some key piece of information the automaton
has to remember.

● If you only need to remember one of finitely
many pieces of information, that gives you a
DFA.
● This can be made rigorous! Take CS154 for details.

● If you need to remember one of infinitely many
pieces of information, you can use the Myhill-
Nerode theorem to prove that the language
has no DFA.

Where We Stand

Where We Stand
● We've ended up where we are now by trying to answer the

question “what problems can you solve with a computer?”
● We defined a computer to be DFA, which means that the

problems we can solve are precisely the regular languages.
● We've discovered several equivalent ways to think about

regular languages (DFAs, NFAs, and regular expressions)
and used that to reason about the regular languages.

● We now have a powerful intuition for where we ended up:
DFAs are finite-memory computers, and regular languages
correspond to problems solvable with finite memory.

● Putting all of this together, we have a much deeper sense
for what finite memory computation looks like – and what it
doesn't look like!

Where We're Going
● What does computation look like with

unbounded memory?
● What problems can you solve with

unbounded-memory computers?
● What does it even mean to “solve” such a

problem?
● And how do we know the answers to any

of these questions?

Your Action Items
● Read “Guide to the Myhill-Nerode

Theorem”
● It’s a useful refresher and deep-dive into all

the topics we covered today.
● And it has worked exercises to give you a

sense of how the theorem works!

Next Time
● Context-Free Languages

● Context-Free Grammars
● Generating Languages from Scratch

	Slide 1
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 28
	Slide 29
	Slide 30
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56

